p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.79C23, C23.37C24, C22.77C25, C24.131C23, C22⋊22+ 1+4, D42⋊12C2, C4○D4⋊17D4, D4⋊14(C2×D4), D4○(C4⋊D4), Q8⋊13(C2×D4), Q8○(C22⋊Q8), D4⋊5D4⋊14C2, Q8⋊6D4⋊16C2, Q8⋊5D4⋊14C2, (C4×D4)⋊35C22, (C2×C4).70C24, (C4×Q8)⋊37C22, C2.29(D4×C23), C22≀C2⋊5C22, C4⋊1D4⋊17C22, C4⋊C4.291C23, C4⋊D4⋊81C22, (C23×C4)⋊40C22, C4.118(C22×D4), C22⋊Q8⋊24C22, (C2×D4).465C23, C4.4D4⋊23C22, (C22×D4)⋊34C22, C22⋊C4.17C23, (C2×2+ 1+4)⋊9C2, (C2×Q8).442C23, (C22×Q8)⋊66C22, C22.11(C22×D4), C22.29C24⋊20C2, C22.19C24⋊24C2, C42⋊C2⋊32C22, (C22×C4).351C23, C2.27(C2×2+ 1+4), C2.16(C2.C25), C22.D4⋊49C22, C22.31C24⋊11C2, C23.33C23⋊15C2, (C2×C4)⋊13(C2×D4), (C2×D4)○(C4⋊D4), (C2×C4⋊D4)⋊65C2, (C2×C4⋊C4)⋊68C22, (C22×C4○D4)⋊23C2, (C2×C4○D4)⋊25C22, (C2×C22⋊C4)⋊45C22, SmallGroup(128,2220)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.77C25
G = < a,b,c,d,e,f,g | a2=b2=c2=d2=e2=f2=1, g2=a, ab=ba, dcd=gcg-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece=bc=cb, bd=db, be=eb, bf=fb, bg=gb, cf=fc, de=ed, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 1444 in 829 conjugacy classes, 430 normal (20 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×Q8, C22≀C2, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4⋊1D4, C23×C4, C22×D4, C22×Q8, C2×C4○D4, C2×C4○D4, C2×C4○D4, 2+ 1+4, C23.33C23, C2×C4⋊D4, C22.19C24, C22.29C24, C22.31C24, D42, D4⋊5D4, Q8⋊5D4, Q8⋊6D4, C22×C4○D4, C2×2+ 1+4, C22.77C25
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, C25, D4×C23, C2×2+ 1+4, C2.C25, C22.77C25
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)
(1 11)(2 12)(3 9)(4 10)(5 29)(6 30)(7 31)(8 32)(13 18)(14 19)(15 20)(16 17)(21 26)(22 27)(23 28)(24 25)
(1 4)(2 3)(5 30)(6 29)(7 32)(8 31)(9 12)(10 11)(13 14)(15 16)(17 20)(18 19)(21 27)(22 26)(23 25)(24 28)
(1 13)(2 14)(3 15)(4 16)(5 27)(6 28)(7 25)(8 26)(9 20)(10 17)(11 18)(12 19)(21 32)(22 29)(23 30)(24 31)
(1 22)(2 23)(3 24)(4 21)(5 18)(6 19)(7 20)(8 17)(9 25)(10 26)(11 27)(12 28)(13 29)(14 30)(15 31)(16 32)
(1 14)(2 15)(3 16)(4 13)(5 26)(6 27)(7 28)(8 25)(9 17)(10 18)(11 19)(12 20)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
G:=sub<Sym(32)| (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,12)(3,9)(4,10)(5,29)(6,30)(7,31)(8,32)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,4)(2,3)(5,30)(6,29)(7,32)(8,31)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,27)(22,26)(23,25)(24,28), (1,13)(2,14)(3,15)(4,16)(5,27)(6,28)(7,25)(8,26)(9,20)(10,17)(11,18)(12,19)(21,32)(22,29)(23,30)(24,31), (1,22)(2,23)(3,24)(4,21)(5,18)(6,19)(7,20)(8,17)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,14)(2,15)(3,16)(4,13)(5,26)(6,27)(7,28)(8,25)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)>;
G:=Group( (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32), (1,11)(2,12)(3,9)(4,10)(5,29)(6,30)(7,31)(8,32)(13,18)(14,19)(15,20)(16,17)(21,26)(22,27)(23,28)(24,25), (1,4)(2,3)(5,30)(6,29)(7,32)(8,31)(9,12)(10,11)(13,14)(15,16)(17,20)(18,19)(21,27)(22,26)(23,25)(24,28), (1,13)(2,14)(3,15)(4,16)(5,27)(6,28)(7,25)(8,26)(9,20)(10,17)(11,18)(12,19)(21,32)(22,29)(23,30)(24,31), (1,22)(2,23)(3,24)(4,21)(5,18)(6,19)(7,20)(8,17)(9,25)(10,26)(11,27)(12,28)(13,29)(14,30)(15,31)(16,32), (1,14)(2,15)(3,16)(4,13)(5,26)(6,27)(7,28)(8,25)(9,17)(10,18)(11,19)(12,20)(21,29)(22,30)(23,31)(24,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32) );
G=PermutationGroup([[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32)], [(1,11),(2,12),(3,9),(4,10),(5,29),(6,30),(7,31),(8,32),(13,18),(14,19),(15,20),(16,17),(21,26),(22,27),(23,28),(24,25)], [(1,4),(2,3),(5,30),(6,29),(7,32),(8,31),(9,12),(10,11),(13,14),(15,16),(17,20),(18,19),(21,27),(22,26),(23,25),(24,28)], [(1,13),(2,14),(3,15),(4,16),(5,27),(6,28),(7,25),(8,26),(9,20),(10,17),(11,18),(12,19),(21,32),(22,29),(23,30),(24,31)], [(1,22),(2,23),(3,24),(4,21),(5,18),(6,19),(7,20),(8,17),(9,25),(10,26),(11,27),(12,28),(13,29),(14,30),(15,31),(16,32)], [(1,14),(2,15),(3,16),(4,13),(5,26),(6,27),(7,28),(8,25),(9,17),(10,18),(11,19),(12,20),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)]])
44 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2K | 2L | ··· | 2T | 4A | ··· | 4J | 4K | ··· | 4W |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
44 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | 2+ 1+4 | C2.C25 |
kernel | C22.77C25 | C23.33C23 | C2×C4⋊D4 | C22.19C24 | C22.29C24 | C22.31C24 | D42 | D4⋊5D4 | Q8⋊5D4 | Q8⋊6D4 | C22×C4○D4 | C2×2+ 1+4 | C4○D4 | C22 | C2 |
# reps | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 | 2 | 2 | 1 | 1 | 8 | 2 | 2 |
Matrix representation of C22.77C25 ►in GL6(ℤ)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 0 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 0 | 0 | -1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -2 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 1 |
0 | 0 | 0 | -1 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | -2 |
0 | 0 | 1 | 0 | -1 | -1 |
0 | 0 | 1 | -1 | 0 | -1 |
0 | 0 | 0 | 0 | 0 | -1 |
1 | 2 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | -2 | 0 |
0 | 0 | 0 | 0 | -1 | 1 |
0 | 0 | 0 | 0 | -1 | 0 |
0 | 0 | 0 | 1 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | -2 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | 1 |
0 | 0 | 1 | -1 | -1 | 0 |
G:=sub<GL(6,Integers())| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,-2,-1,-1,-1,0,0,0,0,0,1,0,0,0,0,1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,-2,-1,-1,-1],[1,0,0,0,0,0,2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,-2,-1,-1,-1,0,0,0,1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,1,0,0,-2,-1,-1,-1,0,0,0,0,0,-1,0,0,0,0,1,0] >;
C22.77C25 in GAP, Magma, Sage, TeX
C_2^2._{77}C_2^5
% in TeX
G:=Group("C2^2.77C2^5");
// GroupNames label
G:=SmallGroup(128,2220);
// by ID
G=gap.SmallGroup(128,2220);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,1430,570,1684,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=e^2=f^2=1,g^2=a,a*b=b*a,d*c*d=g*c*g^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*f=f*c,d*e=e*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations